I needed to explore ETag response headers locally and I’ve come up with a workflow for querying HTTP Archive data on my laptop in Parquet format using DuckDB.
You may have to create Google Cloud project IDs, Google BigQuery workspaces, Google Cloud Storage buckets etc.
Query the HTTP Archive in Google BigQuery to create a new table:
SELECT
resp_etag,
COUNT(*) AS sum
FROM
`httparchive.summary_requests.2023_02_01_mobile`
GROUP BY
resp_etag
HAVING
sum > 1
ORDER BY
sum DESC
bq query --use_legacy_sql=false --destination_table lbrocard_bigquery.httparchive_summary_requests_2023_02_01_mobile_resp_etag < etags.sql
That makes a 1.04 GB table with 34,316,234 rows.
Extract the table as compressed Parquet format files in a Google Cloud Storage bucket:
bq extract --destination_format PARQUET --compression ZSTD 'lbrocard_bigquery.httparchive_summary_requests_2023_02_01_mobile_resp_etag' 'gs://lbrocard-httparchive/httparchive.summary_requests.2023_02_01_mobile_resp_etag/*'
This creates 7 Parquet files, with a combined size of 528 MB.
Copy the files locally:
mkdir httparchive.summary_requests.2023_02_01_mobile_resp_etag
gsutil -m rsync gs://lbrocard-httparchive/httparchive.summary_requests.2023_02_01_mobile_resp_etag/ httparchive.summary_requests.2023_02_01_mobile_resp_etag
Then query the local files using the duckdb CLI with:
duckdb
D SELECT resp_etag, sum FROM read_parquet('httparchive.summary_requests.2023_02_01_mobile_resp_etag/*') WHERE regexp_matches(resp_etag, '(W/)?".*apple.*"$') ORDER BY sum DESC;
┌──────────────────────────────────────────────────────────────────────────────────────┬───────┐
│ resp_etag │ sum │
│ varchar │ int64 │
├──────────────────────────────────────────────────────────────────────────────────────┼───────┤
│ "apple-touch-icon-07b519aab2aa41fafd5da3a6642a5d9c.png" │ 12 │
│ "global/download/apple-62b449309f50b222e6e6f06e581eb66e.svg" │ 10 │
│ "apple/apple-login-53408aea6fc94d03eab2e540df50c123.js" │ 5 │
│ W/"static/media/icon-apple.74ca668ab1d7f2eafa5d.756fab2c07.svg" │ 3 │
│ W/"favicons/apple-touch-icon-60x60-precomposed-a0e563e71bba6a64f81bda6bc7b0e313.png" │ 2 │
│ "images/home-page/header/apple-6046f0c7c8a1fe157f8d5b5d1212a3f9.svg" │ 2 │
└──────────────────────────────────────────────────────────────────────────────────────┴───────┘
I embed similar queries into an R Markdown document and generate some interesting reports.
Hope this is useful! Leon